The anisotropic fractional isoperimetric problem with respect to unconditional unit balls

نویسندگان

چکیده

The minimizers of the anisotropic fractional isoperimetric inequality with respect to a convex body $ K in \mathbb{R}^n are shown be equivalent star bodies whenever is strictly and unconditional. From this Pólya-Szeg? principle for seminorms derived by using symmetrization bodies.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Isoperimetric Problem with Respect to a Mixed Euclidean-gaussian Density

The isoperimetric problem with respect to the product-type density e |x| 2 dx dy on the Euclidean space R × R is studied, with particular emphasis on the case k = 1. A conjecture about the minimality of large cylinders in the case k > 1 is also formulated.

متن کامل

An isoperimetric inequality on the lp balls

The normalised volume measure on the lp unit ball (1 ≤ p ≤ 2) satisfies the following isoperimetric inequality: the boundary measure of a set of measure a is at least cnã log(1/ã), where ã = min(a, 1− a). Résumé Nous prouvons une inégalité isopérimétrique pour la mesure uniforme Vp,n sur la boule unité de l n p (1 ≤ p ≤ 2). Si Vp,n(A) = a, alors V + p,n(A) ≥ cn ã log 1/ã, où V + p,n est la mesu...

متن کامل

Lines Tangent to Four Unit Balls problem 2

The Golden Partition Conjecture is motivated by conjectures whose root is a famous sorting problem. Imagine that a finite set S with cardinality n has a hidden total order ≺ that we would like to uncover by making comparisons between pairs of elements from S. Comparing a pair u, v ∈ S means uncovering either u ≺ v or v ≺ u. How many comparisons are needed in the worst case? The classical answer...

متن کامل

Universal formulas for CLF’s with respect to Minkowski balls

This note provides explicit, algebraic stabilizing formulas for clf’s when controls are restricted to certain Minkowski balls in Euclidean space. Feedbacks of this kind are known to exist by a theorem of Artstein, but the proof of Artstein’s theorem is nonconstructive. The formulas are used to construct approximation solutions to some stabilization problems.

متن کامل

Euclidean Balls Solve Some Isoperimetric Problems with Nonradial Weights

In this note we present the solution of some isoperimetric problems in open convex cones of R in which perimeter and volume are measured with respect to certain nonradial weights. Surprisingly, Euclidean balls centered at the origin (intersected with the convex cone) minimize the isoperimetric quotient. Our result applies to all nonnegative homogeneous weights satisfying a concavity condition i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Pure and Applied Analysis

سال: 2021

ISSN: ['1534-0392', '1553-5258']

DOI: https://doi.org/10.3934/cpaa.2020290